V's Metric On Mn(n,R)

Let $A, B \in Mn(n, \mathbb{R})$. Then we define a metric d on $Mn(n, \mathbb{R})$ as follow: $d(A, B) = \sup\{|a_{ij} - b_{ij}|\} \forall i, j; 1 \leq i, j \leq n.$

Show that GL(n,R) is dense subset of Mn(n,R).

Pf: Case[1], choose $A \in Mn(n, \mathbb{R})$ and let $detA \neq 0$.

Now we have $A = (C_1 \ C_2 \ C_3 \ \dots \ C_n)$ where $C'_i s$ are column vectors which are linearly independent. Now we construct a sequence $(A_k)_{k\geq 1}$ defined as

 $A_{k} = \left(C_{1} C_{2} C_{3} \dots \frac{k}{k+1} C_{r} \dots C_{n}\right).$ Now easy to see that $(A_{k})_{k \ge 1} \subseteq GL(n, \mathbb{R}).$

Using V's metric we shall now show that $A_k \rightarrow A$.

$$d(A_k, A) = \frac{a_{ir}}{k+1} \to 0, \text{ as } k$$
$$\to \infty, \text{ for some } i, 1 \le i \le n.$$

Hence proved.

Case[2]: det A = 0.

In that scenario we have say $C_1, C_2, C_3 \dots ..., C_s$ many column vectors are linearly independent rest are linear combination of them. Now we form a sequence as follow:

$$A_{k} = \left(C_{1} \ C_{2} \ C_{3} \ \dots \ C_{s} \ C_{s+1} + \frac{1}{k} e_{s+1} \ \dots \ C_{n} + \frac{1}{k} e_{n}\right),$$

where e_j for $s + 1 \le j \le n$ are basis vectors of \mathbb{R}^n such that they are linearly

independent with the column vectors C_t for $1 \le t \le s$. Now easy to check $(A_k)_{k\ge 1} \subseteq GL(n, \mathbb{R})$. Using V's metric we shall now show that $A_k \rightarrow A$.

$$d(A_k, A) = \frac{1}{k} \to 0, as \ k \to \infty.$$

Hence proved.

Now the arbitrariness of $A \in Mn(n, \mathbb{R})$ proves the denseness of $GL(n, \mathbb{R})$.